Commit 13bc5a72 authored by Jolahn Vaudey's avatar Jolahn Vaudey
Browse files

Upload New File

parent e4314133
---
title: "Analyse du risque de défaillance des joints toriques de la navette Challenger"
author: "Arnaud Legrand"
date: "28 juin 2018"
output: html_document
---
Le 27 Janvier 1986, veille du décollage de la navette _Challenger_, eu
lieu une télé-conférence de trois heures entre les ingénieurs de la
Morton Thiokol (constructeur d'un des moteurs) et de la NASA. La
discussion portait principalement sur les conséquences de la
température prévue au moment du décollage de 31°F (juste en dessous de
0°C) sur le succès du vol et en particulier sur la performance des
joints toriques utilisés dans les moteurs. En effet, aucun test
n'avait été effectué à cette température.
L'étude qui suit reprend donc une partie des analyses effectuées cette
nuit là et dont l'objectif était d'évaluer l'influence potentielle de
la température et de la pression à laquelle sont soumis les joints
toriques sur leur probabilité de dysfonctionnement. Pour cela, nous
disposons des résultats des expériences réalisées par les ingénieurs
de la NASA durant les 6 années précédant le lancement de la navette
Challenger.
# Chargement des données
Nous commençons donc par charger ces données:
```{r}
data = read.csv("shuttle.csv",header=T)
data
```
Le jeu de données nous indique la date de l'essai, le nombre de joints
toriques mesurés (il y en a 6 sur le lançeur principal), la
température (en Farenheit) et la pression (en psi), et enfin le
nombre de dysfonctionnements relevés.
# Inspection graphique des données
Les vols où aucun incident n'est relevé n'apportant aucun information
sur l'influence de la température ou de la pression sur les
dysfonctionnements, nous nous concentrons sur les expériences où au
moins un joint a été défectueux.
**C'est évidemment faux, les vols sans dysfonctionnements apportent également des informations sur ceux-ci.**
```{r}
dataNoAccident = data[data$Malfunction==0,]
data = data[data$Malfunction>0,]
mean(data$Temperature)
mean(dataNoAccident$Temperature)
```
**On le voit ici par exemple, la temperature moyenne est plus faible lorsqu'il y a des accidents (~64°F contre ~72°F pour les cas sans accidents)**
**L'analyse est donc nécessairement faussée à partir de là !**
Très bien, nous avons une variabilité de température importante mais
la pression est quasiment toujours égale à 200, ce qui devrait
simplifier l'analyse.
Comment la fréquence d'échecs varie-t-elle avec la température ?
```{r}
plot(data=data, Malfunction/Count ~ Temperature, ylim=c(0,1))
```
À première vue, ce n'est pas flagrant mais bon, essayons quand même
d'estimer l'impact de la température $t$ sur la probabilité de
dysfonctionnements d'un joint.
# Estimation de l'influence de la température
Supposons que chacun des 6 joints toriques est endommagé avec la même
probabilité et indépendamment des autres et que cette probabilité ne
dépend que de la température. Si on note $p(t)$ cette probabilité, le
nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à
température $t$ suit une loi binomiale de paramètre $n=6$ et
$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une
régression logistique.
```{r}
logistic_reg = glm(data=data, Malfunction/Count ~ Temperature, weights=Count,
family=binomial(link='logit'))
summary(logistic_reg)
```
L'estimateur le plus probable du paramètre de température est 0.001416
et l'erreur standard de cet estimateur est de 0.049, autrement dit on
ne peut pas distinguer d'impact particulier et il faut prendre nos
estimations avec des pincettes.
**La régression ne donne pas ici un résultat positif, ce qui veut simplement dire qu'il ne semble pas y avoir de corrélation linéaire entre les accidents et la température. Cela ne signifie pas qu'il n'y a pas de corrélation du tout: il y a une très forte incertitude.**
# Estimation de la probabilité de dysfonctionnant des joints toriques
La température prévue le jour du décollage est de 31°F. Essayons
d'estimer la probabilité de dysfonctionnement des joints toriques à
cette température à partir du modèle que nous venons de construire:
```{r}
# shuttle=shuttle[shuttle$r!=0,]
tempv = seq(from=30, to=90, by = .5)
rmv <- predict(logistic_reg,list(Temperature=tempv),type="response")
plot(tempv,rmv,type="l",ylim=c(0,1))
points(data=data, Malfunction/Count ~ Temperature)
```
**Ici, une prédiction est effectuée alors que la p-value de la régression est très mauvaise. Elle n'a clairement aucune valeur, et cela ne signifie pas que la variation de température n'a pas d'importance. **
Comme on pouvait s'attendre au vu des données initiales, la
température n'a pas d'impact notable sur la probabilité d'échec des
joints toriques. Elle sera d'environ 0.2, comme dans les essais
précédents où nous il y a eu défaillance d'au moins un joint. Revenons
à l'ensemble des données initiales pour estimer la probabilité de
défaillance d'un joint:
```{r}
data_full = read.csv("shuttle.csv",header=T)
sum(data_full$Malfunction)/sum(data_full$Count)
```
Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe
un joint primaire un joint secondaire sur chacune des trois parties du
lançeur, la probabilité de défaillance des deux joints d'un lançeur
est de $p^2 \approx 0.00425$. La probabilité de défaillance d'un des
lançeur est donc de $1-(1-p^2)^3 \approx 1.2%$. Ça serait vraiment
pas de chance... Tout est sous contrôle, le décollage peut donc avoir
lieu demain comme prévu.
Seulement, le lendemain, la navette Challenger explosera et emportera
avec elle ses sept membres d'équipages. L'opinion publique est
fortement touchée et lors de l'enquête qui suivra, la fiabilité des
joints toriques sera directement mise en cause. Au delà des problèmes
de communication interne à la NASA qui sont pour beaucoup dans ce
fiasco, l'analyse précédente comporte (au moins) un petit
problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette
analyse et de regarder ce jeu de données sous tous les angles afin
d'expliquer ce qui ne va pas.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment