Commit 2f68de0b authored by Camille Segall's avatar Camille Segall
Browse files

add main.c

parent 9d83f90c
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int calculate_nbr(); //fonction pour lire les 3 premieres valeurs transmit par l'utilisateur
//et calculer le nombre de prises
void recover_3values(uint8_t* buffercut, int position, uint8_t* buffer); // fonction pour prendre
// a chaque fois 3 valeurs de buffercut et les sauvegarder dans buffer
int determine_led_state(attiny slave, uint8_t* buffer); // fonction pour determiner l'etat de
// chaque LED
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
uint8_t beginAcq[] = "Debut Acquisition\n"; // message de debut
uint8_t buf[12] = {0}; // pour sauvegarder les valeurs a transmettre par I2C
attiny slave; // definition du slave attiny85
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
HAL_UART_Transmit( &huart2, beginAcq, sizeof( beginAcq ), 100 );
// transmettre le premier message
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
uint8_t* buffercut; // pour sauvegarder le reste des valeurs transmit par l'utilisateur
uint8_t buffer[3] = {0}; // pour sauvegarder 3 de ces valeurs
int nbrPrises, position; // premier variable pour determiner le nombre de prises
// deuxieme variable pour determiner la position dans buffercut
slave = new_slave(); // initialiser le slave attiny85
nbrPrises = calculate_nbr(); // calculer le nombre de prises
buffercut = calloc( 3*nbrPrises, sizeof( *buffercut ) ); // allouer buffercut de la
// taille 3 fois le nombre de prises
HAL_UART_Receive( &huart2, buffercut, 3*nbrPrises, 100 );
while ( buffercut[0] < 48 || buffercut[0] > 49 ){
HAL_UART_Receive( &huart2, buffercut, 3*nbrPrises, 100 );
} // recevoir le reste des valeurs et les sauvegarder dans buffercut
// tant que la premiere valeur n'est pas 0 ou 1 repeter la reception
for ( position = 0; position < nbrPrises ; position ++){
//repeter la procedure pour chaque prise (3 valeurs pour chaque prise)
recover_3values(buffercut, position, &buffer); // prendre les 3 valeurs suivantes de
// buffercut et les sauvegarder dans buffer
slave = define_slave(buffer); // definir le slave
buf[0] = determine_led_state(slave, &buffer); // determiner l'etat de la led
HAL_I2C_Master_Transmit( &hi2c1, slave.adresse, buf, 1, 100 ); // transmettre l'etat
// a la led par I2C avec l'aide de son adresse
HAL_Delay( 500 ); // attendre pour s'assurer que la transmission a fini
}
/* USER CODE BEGIN 3 */
free( buffercut );
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_HSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x2000090E;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 38400;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
}
/* USER CODE BEGIN 4 */
int calculate_nbr() {
uint8_t buffer[3] = {0}; // pour sauvegarder les 3 premiers valeurs
int nbrPrises; // pour sauvegarder le nombre de prises
HAL_UART_Receive( &huart2, buffer, 3, 5000 ); // recevoir les 3 premiers valeurs et les
// sauvegarder dans buffer
while(buffer[0] == 0 && buffer[1] == 0 && buffer[2] == 0) {
HAL_UART_Receive( &huart2, buffer, 3, 100 );
} //tant qu'il n'y a pas 3 valeurs a recevoir reessayer la reception
HAL_UART_AbortReceive( &huart2 ); // s'arreter apres trois valeurs
nbrPrises += 100*(buffer[0] - 48) + 10 * (buffer[1] - 48) + buffer[2] - 48;
// on s'occupe des nombres ascii pour ca -48
return nbrPrises; // retourner le nombre de prises
}
void recover_3values(uint8_t* buffercut, int position, uint8_t* buffer) {
int i; // compteur
for ( i = 0; i < 3 ; i++ ){
buffer[i] = buffercut[position*3 + i];
} // on recuppere 3 valeurs de buffercut et on les sauvegarde dans buffer
HAL_UART_Transmit( &huart2, "\n" , sizeof( "\n" ), 100 ); // nouvelle ligne
HAL_UART_AbortReceive( &huart2 ); // arreter la reception apres chaque 3 valeurs
}
int determine_led_state(attiny slave, uint8_t* buffer) {
uint8_t ledOn[] = "LEDs ON\n"; // message pour les leds allumees
uint8_t ledOff[] = "LEDs OFF\n"; // message pour les leds eteinds
uint8_t forAdresse[] = "Pour le slave d'adresse : "; // message pour l'adresse
int etat; // pour sauvegarder l'etat de la led
if ( slave.stateled == 1 ){
etat = 1;
HAL_UART_Transmit(&huart2, ledOn, sizeof(ledOn), 100);
// sauvegarder l'etat et transmettre le message que la led est allumeee
} else {
etat = 0;
HAL_UART_Transmit(&huart2, ledOff, sizeof(ledOff), 100);
// sauvegarder l'etat et transmettre le message que la led est eteind
}
HAL_UART_Transmit(&huart2, forAdresse, sizeof(forAdresse), 100);
HAL_UART_Transmit(&huart2, buffer + 1, 2, 100);
// transmettre l'adresse de la led
return etat; // retourner l'etat
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment