Commit 789a1b79 authored by Beitone's avatar Beitone
Browse files

Initial commit

parents
This diff is collapsed.
This diff is collapsed.
<?xml version="1.0"?>
<opencv_storage>
<params>
<stageType>BOOST</stageType>
<featureType>HAAR</featureType>
<height>24</height>
<width>24</width>
<stageParams>
<boostType>GAB</boostType>
<minHitRate>9.9500000476837158e-01</minHitRate>
<maxFalseAlarm>5.0000000000000000e-01</maxFalseAlarm>
<weightTrimRate>9.4999999999999996e-01</weightTrimRate>
<maxDepth>1</maxDepth>
<maxWeakCount>100</maxWeakCount></stageParams>
<featureParams>
<maxCatCount>0</maxCatCount>
<featSize>1</featSize>
<mode>BASIC</mode></featureParams></params>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage0>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>-2.7382472157478333e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 95629 -3.5492148250341415e-02</internalNodes>
<leafValues>
9.0322577953338623e-01 -4.0425533056259155e-01</leafValues></_>
<_>
<internalNodes>
0 -1 22932 -2.1478913724422455e-02</internalNodes>
<leafValues>
-7.8114086389541626e-01 7.0342415571212769e-01</leafValues></_>
<_>
<internalNodes>
0 -1 133606 -1.4550323248840868e-04</internalNodes>
<leafValues>
9.1157144308090210e-01 -5.5001419782638550e-01</leafValues></_></weakClassifiers></stage0>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage1>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>9.6869833767414093e-02</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 102161 1.7945762723684311e-02</internalNodes>
<leafValues>
-2.9411765933036804e-01 8.9655172824859619e-01</leafValues></_>
<_>
<internalNodes>
0 -1 133315 -1.0587333235889673e-03</internalNodes>
<leafValues>
1. -3.6475226283073425e-01</leafValues></_>
<_>
<internalNodes>
0 -1 37824 -5.3041672799736261e-04</internalNodes>
<leafValues>
8.4800612926483154e-01 -4.3492963910102844e-01</leafValues></_></weakClassifiers></stage1>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage10>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>-4.6407237648963928e-02</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 13395 -3.1699382816441357e-05</internalNodes>
<leafValues>
8.9285713434219360e-01 -2.4528302252292633e-01</leafValues></_>
<_>
<internalNodes>
0 -1 116978 -5.4489454487338662e-04</internalNodes>
<leafValues>
7.3394680023193359e-01 -4.1050189733505249e-01</leafValues></_>
<_>
<internalNodes>
0 -1 89428 2.9394770535873249e-05</internalNodes>
<leafValues>
-5.2876245975494385e-01 7.3060655593872070e-01</leafValues></_></weakClassifiers></stage10>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage11>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>-6.6928565502166748e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 11541 -9.3359092716127634e-04</internalNodes>
<leafValues>
6.8421053886413574e-01 -4.5454546809196472e-01</leafValues></_>
<_>
<internalNodes>
0 -1 135179 -7.7302436693571508e-05</internalNodes>
<leafValues>
7.4514609575271606e-01 -5.0424265861511230e-01</leafValues></_>
<_>
<internalNodes>
0 -1 143044 9.2975195730105042e-04</internalNodes>
<leafValues>
-3.7377664446830750e-01 9.3054848909378052e-01</leafValues></_>
<_>
<internalNodes>
0 -1 84 2.8100959025323391e-04</internalNodes>
<leafValues>
-5.8610963821411133e-01 6.4699250459671021e-01</leafValues></_></weakClassifiers></stage11>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage12>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>1.8795328214764595e-02</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 36629 1.1529857874847949e-04</internalNodes>
<leafValues>
6.8831169605255127e-01 -5.0000000000000000e-01</leafValues></_>
<_>
<internalNodes>
0 -1 38224 1.2456163531169295e-03</internalNodes>
<leafValues>
-3.0383297801017761e-01 9.1074836254119873e-01</leafValues></_>
<_>
<internalNodes>
0 -1 125797 -1.3515008322428912e-04</internalNodes>
<leafValues>
8.9336514472961426e-01 -3.6568337678909302e-01</leafValues></_></weakClassifiers></stage12>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage13>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>-2.1723795682191849e-02</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 161402 -3.1299594411393628e-05</internalNodes>
<leafValues>
8.4905660152435303e-01 -1.4285714924335480e-01</leafValues></_>
<_>
<internalNodes>
0 -1 149396 -3.3828924642875791e-05</internalNodes>
<leafValues>
6.8040323257446289e-01 -4.2441570758819580e-01</leafValues></_>
<_>
<internalNodes>
0 -1 164 5.9202779084444046e-04</internalNodes>
<leafValues>
-4.4636470079421997e-01 8.3465516567230225e-01</leafValues></_></weakClassifiers></stage13>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage14>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>-2.2426818311214447e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 49621 -6.7167459055781364e-03</internalNodes>
<leafValues>
9.1836732625961304e-01 -1.3333334028720856e-01</leafValues></_>
<_>
<internalNodes>
0 -1 46224 1.6107901930809021e-02</internalNodes>
<leafValues>
-2.8833556175231934e-01 9.4284290075302124e-01</leafValues></_>
<_>
<internalNodes>
0 -1 13876 1.7657405696809292e-03</internalNodes>
<leafValues>
-3.5562795400619507e-01 8.5050320625305176e-01</leafValues></_>
<_>
<internalNodes>
0 -1 161929 7.0201430935412645e-04</internalNodes>
<leafValues>
-4.9867200851440430e-01 8.3020281791687012e-01</leafValues></_></weakClassifiers></stage14>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage15>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>1.6423395276069641e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 21560 -3.1299594411393628e-05</internalNodes>
<leafValues>
8.2456141710281372e-01 -1.9230769574642181e-01</leafValues></_>
<_>
<internalNodes>
0 -1 1824 -2.9770411550998688e-02</internalNodes>
<leafValues>
-9.0806704759597778e-01 4.3219423294067383e-01</leafValues></_>
<_>
<internalNodes>
0 -1 67730 -1.5457059489563107e-03</internalNodes>
<leafValues>
1. -4.0397253632545471e-01</leafValues></_>
<_>
<internalNodes>
0 -1 67725 6.0544419102370739e-04</internalNodes>
<leafValues>
-3.8318100571632385e-01 8.8468164205551147e-01</leafValues></_>
<_>
<internalNodes>
0 -1 159677 -3.2457039196742699e-05</internalNodes>
<leafValues>
8.7402290105819702e-01 -3.0536815524101257e-01</leafValues></_></weakClassifiers></stage15>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage16>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>1.7075480520725250e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 37979 -1.6736967489123344e-02</internalNodes>
<leafValues>
-1. 5.5319148302078247e-01</leafValues></_>
<_>
<internalNodes>
0 -1 102570 -2.7882652357220650e-02</internalNodes>
<leafValues>
6.6334873437881470e-01 -4.9737909436225891e-01</leafValues></_>
<_>
<internalNodes>
0 -1 160985 -2.5286854361183941e-04</internalNodes>
<leafValues>
1. -4.1010835766792297e-01</leafValues></_>
<_>
<internalNodes>
0 -1 48974 -5.0646551244426519e-05</internalNodes>
<leafValues>
5.4819554090499878e-01 -6.3567709922790527e-01</leafValues></_></weakClassifiers></stage16>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage17>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>-2.5588291883468628e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 91738 5.0395056605339050e-02</internalNodes>
<leafValues>
6.7567569017410278e-01 -3.7142857909202576e-01</leafValues></_>
<_>
<internalNodes>
0 -1 106406 -7.1595255285501480e-03</internalNodes>
<leafValues>
9.4730597734451294e-01 -2.8385788202285767e-01</leafValues></_>
<_>
<internalNodes>
0 -1 33615 -1.0494661983102560e-03</internalNodes>
<leafValues>
9.5073133707046509e-01 -2.5061404705047607e-01</leafValues></_>
<_>
<internalNodes>
0 -1 53635 -2.5961706414818764e-03</internalNodes>
<leafValues>
8.8308584690093994e-01 -3.9708667993545532e-01</leafValues></_></weakClassifiers></stage17>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage18>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>6.0422994196414948e-02</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 94219 7.0289694122038782e-05</internalNodes>
<leafValues>
-6.4516127109527588e-02 8.7234044075012207e-01</leafValues></_>
<_>
<internalNodes>
0 -1 139243 5.5230608268175274e-05</internalNodes>
<leafValues>
-3.4490552544593811e-01 7.1243596076965332e-01</leafValues></_>
<_>
<internalNodes>
0 -1 114353 -6.1137427110224962e-04</internalNodes>
<leafValues>
6.3991624116897583e-01 -4.6701189875602722e-01</leafValues></_></weakClassifiers></stage18>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage19>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-2.1287178993225098e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 15085 -3.7149317562580109e-02</internalNodes>
<leafValues>
-7.8947371244430542e-01 5.7777780294418335e-01</leafValues></_>
<_>
<internalNodes>
0 -1 33204 -5.1114129746565595e-05</internalNodes>
<leafValues>
6.3185137510299683e-01 -4.7160652279853821e-01</leafValues></_>
<_>
<internalNodes>
0 -1 34797 1.1815123260021210e-02</internalNodes>
<leafValues>
-2.5865468382835388e-01 1.</leafValues></_>
<_>
<internalNodes>
0 -1 44505 -2.7723890525521711e-05</internalNodes>
<leafValues>
5.9137034416198730e-01 -5.9355062246322632e-01</leafValues></_>
<_>
<internalNodes>
0 -1 3 -1.2639902706723660e-04</internalNodes>
<leafValues>
6.7104488611221313e-01 -5.7029563188552856e-01</leafValues></_></weakClassifiers></stage19>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage2>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>-3.2286271452903748e-02</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 11535 -2.5995010510087013e-03</internalNodes>
<leafValues>
9.2727273702621460e-01 -2.5925925374031067e-01</leafValues></_>
<_>
<internalNodes>
0 -1 12777 -1.0167654603719711e-02</internalNodes>
<leafValues>
1. -3.6135682463645935e-01</leafValues></_>
<_>
<internalNodes>
0 -1 112724 7.9438155516982079e-03</internalNodes>
<leafValues>
-5.9820216894149780e-01 7.6586192846298218e-01</leafValues></_></weakClassifiers></stage2>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage20>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>1.2120635062456131e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 29516 -2.6811205316334963e-04</internalNodes>
<leafValues>
-8.6666667461395264e-01 5.3191488981246948e-01</leafValues></_>
<_>
<internalNodes>
0 -1 71600 -1.5088638756424189e-03</internalNodes>
<leafValues>
9.3707054853439331e-01 -3.8656193017959595e-01</leafValues></_>
<_>
<internalNodes>
0 -1 90002 7.4411062523722649e-03</internalNodes>
<leafValues>
-3.8568156957626343e-01 8.5068213939666748e-01</leafValues></_>
<_>
<internalNodes>
0 -1 119114 -3.3645326038822532e-04</internalNodes>
<leafValues>
8.8066524267196655e-01 -3.2493165135383606e-01</leafValues></_>
<_>
<internalNodes>
0 -1 117870 3.2542193366680294e-05</internalNodes>
<leafValues>
-4.8126035928726196e-01 6.8646657466888428e-01</leafValues></_></weakClassifiers></stage20>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage21>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-2.7914306521415710e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 151880 -3.1478208256885409e-04</internalNodes>
<leafValues>
-1. 4.8979592323303223e-01</leafValues></_>
<_>
<internalNodes>
0 -1 110362 7.5205285102128983e-03</internalNodes>
<leafValues>
-2.7331295609474182e-01 1.</leafValues></_>
<_>
<internalNodes>
0 -1 114739 1.3662619749084115e-03</internalNodes>
<leafValues>
5.2507215738296509e-01 -5.3003233671188354e-01</leafValues></_>
<_>
<internalNodes>
0 -1 115217 -6.1940979212522507e-03</internalNodes>
<leafValues>
8.8327378034591675e-01 -3.6644211411476135e-01</leafValues></_>
<_>
<internalNodes>
0 -1 106807 2.0504495478235185e-04</internalNodes>
<leafValues>
4.2655134201049805e-01 -8.4886747598648071e-01</leafValues></_></weakClassifiers></stage21>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage22>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>1.3963380828499794e-02</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 4 8.0709294707048684e-05</internalNodes>
<leafValues>
-1.1475409567356110e-01 9.1666668653488159e-01</leafValues></_>
<_>
<internalNodes>
0 -1 27014 -3.5253506153821945e-02</internalNodes>
<leafValues>
1. -2.3206697404384613e-01</leafValues></_>
<_>
<internalNodes>
0 -1 33346 2.2262491285800934e-02</internalNodes>
<leafValues>
-2.7313837409019470e-01 1.</leafValues></_>
<_>
<internalNodes>
0 -1 64290 -3.2619206467643380e-04</internalNodes>
<leafValues>
7.6924133300781250e-01 -3.9749795198440552e-01</leafValues></_></weakClassifiers></stage22>
</opencv_storage>
<?xml version="1.0"?>
<opencv_storage>
<stage23>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>8.0368302762508392e-02</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 145641 -4.9314484931528568e-04</internalNodes>
<leafValues>
1. -2.8571428731083870e-02</leafValues></_>
<_>
<internalNodes>
0 -1 126091 -6.4771901816129684e-04</internalNodes>
<leafValues>
9.1665828227996826e-01 -1.1527142673730850e-01</leafValues></_>
<_>
<internalNodes>
0 -1 157505 -1.5033860108815134e-04</internalNodes>
<leafValues>
-4.8226901888847351e-01 5.3329002857208252e-01</leafValues></_>
<_>
<internalNodes>
0 -1 122982 -5.4339878261089325e-04</internalNodes>
<leafValues>
9.3098676204681396e-01 -3.0907884240150452e-01</leafValues></_></weakClassifiers></stage23>
</opencv_storage>
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment